If it's not what You are looking for type in the equation solver your own equation and let us solve it.
125x^2+49x-196=0
a = 125; b = 49; c = -196;
Δ = b2-4ac
Δ = 492-4·125·(-196)
Δ = 100401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{100401}=\sqrt{49*2049}=\sqrt{49}*\sqrt{2049}=7\sqrt{2049}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-7\sqrt{2049}}{2*125}=\frac{-49-7\sqrt{2049}}{250} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+7\sqrt{2049}}{2*125}=\frac{-49+7\sqrt{2049}}{250} $
| (7x-11)=(5x+5) | | x²-5x=2x²-5x | | 14x‐13=8x+5 | | 11x+31+8x+34=180 | | 5x+1=8x+10 | | t+35=26 | | 2x+x=512 | | 18=3(3x−6 | | -1+18x=6x+13 | | (X^2)-8x+9.75=0 | | Y=12x+90 | | j3=132 | | 180=6-y | | 1/2=6/18h | | k/3+-3=4 | | 7x-2478=x+44 | | 2w-10=w+20 | | 7x+28=7x+9 | | 4k=81 | | q/3+-10=-11 | | 7x+1=6+x | | 2x+15+4x+2x+5=180 | | 70x^2+73.5x-294=0 | | 5-4c=16 | | –3k+–6=–15 | | 20+180-2x+90=180 | | 3+-3q=20 | | X=-7/6x-13/8x+5/6 | | 3P=P(1+0.9t) | | 175m-100m+48,500=50,750-175m | | 5x+18=4x-9 | | 20x+6=-20-2 |